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o ABSTRACT

¢ A general solution of the Deny convolution equation restricted
to half line is obtained using the concepts of random walk theory.

;??. The equation in question arises in several places in applied proba-

bility such as in queueing and storage theories and characterization

problems of probability distributions. Some of the important appli-
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e . 1. INTRODUCTION

Let S be such that it equals either R(=(-=,=)) or R (={0,=)), o be

o a o-finite measure on S such that o({0}%) > 0 and H: S =+ R, be a Borel
¥ Q'*“
,wﬁﬂ measurable function that is locally integrable (w.r.t. Lebesgue measure),

satisfying the integral equation

i%? H(x) = JSH(x+y)o(dy) for a.a.[L]x € S, (1.1)
o where a.a.[L] refers to 'almost all w.r.t. Lebesgue measure'. The
&éi. integral equation (1.1) when S = Ror S = R, has been extensively studied
Egg . by many authors. In particular Deny (1961) has identified the general
iﬁ; solution to the equation when S = R and Lau and Rao (1982) when S = R,.
%Si [Indeed, Deny (1961) arrives at the solution to the equation with S = R
i?; assuming H to be continuous; however, as a straight forward corollary
M of Deny's theorem, the general solution when H is not necessarily contin-
2%? uous follows as pointed out by Rao and Shanbhag (1986).] A special case
%ﬁi of Deny's result when o is a probability measure and H is bounded was
o established earlier by Choquet and Deny (1960), while the Lau~Rao result
CSE subsumes various partial results given earlier by Marsaglia and Tubilla
yé% _ (1975), Shanbhag (1977), Shimjzu (1978), Ramachandran (1979) and several
.:ﬁ others.
ié% There also exist by now a number of alternative approaches for
é%& arriving at the solution to (1.1) either in the case of S = Ror S = R,.
P [See, for example, Ramachandran (1982), Davies and Shanbhag (1984),
a?a Prakasa Rao and Ramachandran (1984), Lau and Rao (1984), Rao and Shanbhag
kl: (1986), and Alzaid, Rao and Shanbhag (1985)]. Both Deny's theorem and
ki{‘ its variant given by Lau and Rao have applications in characterization
%ﬁé problems of probability distributions and branches of applied probability
ké‘ such as reliability and renewal theories. For the details concerning
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applications, the reader is referred to Feller (1966, Vol. 2, p.351),
Shimizu (1978), Shanbhag (1977), Lau and Rao (1982), M.B. Rao and
'y Shanbhag (1982), Rao (1983), Alzaid (1983) and Rao and Shanbhag (1986)

and relevant references therein.

o Consider now the integral equation

o H(x) = { H(x+y)o(dy) for a.a.[L]x € R, (1.2)
' R

ny where ¢ is a o-finite measure on R such that o({0}°) > 0 and H is a non-

W

:ﬁ? negative locally integrable Borel measurable function on R. [It can be

Ny

shown by choosing H and o properly that the Lau-Rao (1982) equation is

t:}:; a special case of (1.2).] We show that H satisfying (1.2) has the
5
i representation
x,"‘g
H(x) = J(  H{x+y)ps(y) + £(x)e™ for a.a.[L)x € R, (1.3)
e, | -“,0)
B
R
{ﬁ; for some real n, a certain measure p concentrated on (-=,0) and a peri-

odic function £ having every nonzero support point of o to be its

t period. Further the measure p arrived at in (1.3) is such that if
n".""
*Q' o{(-=,0)) > 0, then either both p and o are non-arithmetic or they are

arithmetic with the same span.

:?, In view of this result, it is shown in Corollary 1 of Section 2,
?c that Deny's (1961) result or its generalized versions given by Lau and
Th Rao (1984) and Prakasa Rao and Ramachandran (1984) follow from the Lau-
E§§ Rao (1982) theorem. Since the proof of (1.3) given in this paper is
gﬁ; rather simple, the observation just made concerning the alternative

tf proof of Deny's (1961) result is of importance, especially in the light
;E% of the elementary proof based on exchangeability of the Lau-Rao theorem
?¥%; given recently by Alzaid, Rao and Shanbhag (1985b); the possibility of
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such an approach to Deny's theorem was pointed out by Alzaid, Rao and
Shanbhag (1985). ([The reader may find it instructive to compare the
present proof based on the Lau-Rao theorem of Deny's theorem with the

proof of the Lau-Rao theorem based on Deny's theorem as given by Rao

and Shanbhag (1986).]

2. THE MAIN THEOREM

Let us consider the equation (1.2), and define, relative to o,

the measures %1n and Ty OF R such that for every Borel set B of R and

every integer n > 1

o]n(B) c"({(x],...,xn) ¢ R": s

m € R+, m=1,...,n-1, s, € B})

and °2n(8) = o"({(xl,...,xn) ¢ R": Sy © (-w»,0), m=1,...,n-1, S, € B})

n n _
=g ({(x],...,xn) € R': s > s, m=l,....n-1, s € B}),

n

where s Xy ¥ ...+ x ,m>1 and a" is the product measure 1 o.
m 1 m i=] 1

with ¥ o in the notation of Burrill (1972), Following the analogy

with concepts in random walk in probability theory, we may refer to the
measures p and t defined below respectively as the descending ladder
height measure and the (weak) ascending ladder height measure relative

to o:

“ol(e) Z

]O‘]n((-m,O)n') (2.])

o

() = ] 0,0 (Ry0O). (2.2)
n=1

- -
s % X ]|

It is easy to check that if o((-»,0)) > o, then the closed subgroup

e
-

of R generated by supp{p] is the same as that generated by supplo]. Also,
if o(R+) > 0, then the closed subgroup of R generated by supp(t] is the

same as the one generated by supp(c]. These observations in turn, imply

|
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that if o((-=,0)) > 0, then either both p and o are non-arithmetic or
¥
both are arithmetric with the same span, and if o(R,) > 0, then either &
4 both v and o are non-arithmetric or both are arithmetric with the same b,
1 . B g:
span, The main result of the paper is the:following theorem, '
) it
: THEQREM. Let the function H satisfying (1.2) be not a function f
: that is equal to 0 a.e.[L] on (a,»), where a = inf(supp{ol). Then p 2
. and t as defined in (2.1) and (2.2) are Lebesgue-Stieltjes measures. o
. 4
4 o
» [This is equivalent to the statement that they are both Radon measures -
N
¥ and also to the statement that they are both regular measures.] More- .
- over,
! 3
b g
1 ) = [ Hlydo(dy) + E(x)e™ for aatLix s R, (2.3) 3
( el :O') e
p where £ is a non-negative periodic function with £(+) = £(-+s) for >
. 3
p !
- every s € supp[o], and n is a real number such that
N J enx T(dx) =1, (2-4) 0
; )
) (If n satisfying (2.4) does not exist, then we take & in (2.3) to be ;
I b
identically zero with n as an arbitrary real number.]
. I(
)
4
) Proof. The case o((0,=)) = 0 is trivial, since (1.2) implies, in 3
X Froot pE
: view of the assumptions, that o is a Lebesgue-Stieltjes measure in this ~
) case. We shall therefore assume that o((0,=)) > 0. The problem remains 7
N invariant if H and o(dy) are replaced respectively by H(x)e'ax and 2
;, edyo(dy) for any & € R. 1In that case, there is no loss of generality 4
- in assuming that o((0,»)) > 1 and hence in assuming that g
¢ g
Y ;
U ,.
y 3
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*
0 <H (x)= J H(y)dy < = for all x € R
X

following essentially the arguments of Alzaid et al (1985). Since
*
(1.2) is satisfied by H , the theorem follows if we prove it by re-
*
placing H by H . We can then assume without loss of generality that

H itself is a positive decreasing continuous function., Now (1.2) gives

us inductively

k
(x) = | O Loy () + jR+H(x+y)o1k(dy)

k=1,2,... . xeR.. (2.5)

This, in turn, implies that for each x € R,, the sequence of the latter

+?
integrals on the rhs of (2.5) is a decreasing (nonnegative real) sequence

and hence has a limit. Consequently, we can write

H(x) = I Hixsy)o(dy) + R(X), x € R,, (2.6)
- .0
where
H(x) = liz IR+H(x+y)c]k(dy). (2.7)

Since H is assumed to be positive continuous and the integral appearing
on the r.h.s. of {(2.7) has to be finite, it follows immediately that p

is a Lebesgue-Stieltjes measure. Indeed (2.6) implies, in view of the

n decreasing nature of H, that p(R) < 1. The fact that v is a Lebesgue-
D

%zj Stieltjes measure is obvious in the case of o((-=,0)) = 0, in view of
0'. L4

E, the assumption on H, since

~; T = g and J H(y)o(dy) < =.

i h

e,

o

T"f.»

e

e

...........
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5
Furthermore, if o((-=,0)) > 0, then given any Sy € (-,0) Nsupp(o] and

‘ﬁi y e R+. we have
5 ns, 350 So

> T{("’l..y + _—2—))0((7: '_2‘))
‘. (n+1)so

" < ((~oyy + ———)) + O((T.O)), n=0,1,2,..., (2.8)

v

which implies that

g (n+1)
i n+l)s
) (=, y + ——)) <o if t((-my + —52)) < =

"

.‘p

bl Since t((-=,0)) = 0, we have then by reverse induction that t((-=,y}) < = :
;: for each y. This implies that t is a Lebesgue-Stieltjes measure. (For :
% \
'a obtaining (2.8), the identity given in brackets immediately after the
oo,
" definition of o, may be used.) This establishes the first part of the

0 theorem.
1'&
?@ Define now, for any Borel set A(SR), cgﬁ) to be the measure o, 5
¢
o with s; € R_in its definition replaced by s, € R,NA. Clearly then for
$1 every x € R, and Borel set A the sequence
N
a; {J H(x+y)o§ﬁ)(dy): n=1,2,...}
o R,

" is a decreasing sequence of non-negative real numbers and hence has a

1y
;5 limit. Consequently, we have for each c € R,
a2
= ﬁ(x) = Tim J H(x+y)clo c]( dy) + lim J (x+y)o(c’ )(dy). x €R,.
™ me SR me SR, .
s \ (2.9) ]
P
w :
fh Since for every x,c € R, and n=1,2,...
N

J Hxey)ad€ =) (ay) 5J H(x+y)o(dy) :
e R, (c,=) ‘
o

n> A
! C e T “ AR AN L P Ay N DI
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!
o,
s
ﬂy* it follows that the latter limit on the r.h.s. of (2.9) tends to zero
o ' as ¢ - =, We can therefore write
‘Q
3
oy - . _ (0,¢]
3&3 H(x) = 1im Yim I H(x+y)o]n’ (dy), x € R, (2.10)
Croo Moo R+
e
ﬁga Observe that the interpretation of %on given under brackets immedi-
:t(.|
:!:;; ately after its definition yields for each ¢ e R+ and n=1,2,...
0"1»
o [0,c] n
o H{x+y)og *" (dy) = | H(x+y+z)o (dz)o, (dy),
>, In L 1,n-m 2m
o R+ m=1 ‘[o,c] ‘R
*w.: +
By
x e R, (2.11)
e"
S
NN where % is the probability concentrated on {0}, because
o)
n n :
' RY = lf geeasx e s> sy re1,2,000m-15 50 > s, Tem, L)
Q;:r m=1
*
‘::E:' Since t is a Lebesgue-Stieltjes measure and
o
Rt ,
Yot 0 iJ H(x+y+z)o]n(dz) < H(x), x,y € R+, n=1,2,...,
R
" +
’_’& we get from (2.10) and (2.11), using the Lebesque dominated convergence
e
.1
.i: theorem in particular, that
i
o H(x) = limj H(x+y)t(dy)
! ¢+ ¥ [0,C]
HeY
a5 ~
.,:“ = J H(x+y)t(dy), x € R, (2.12)
L R
+
P
7"'_{ Then (2.7) and (2.12) imply the second part of the theorem, in view of
:\_" the Lau-Rao (1982) theorem, for which an elementary proof exists as shown
L 200 B
i by Alzaid et al (1985).
k)
R
» ﬁl.
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Remark 1. The above theorem remains valid with trivial changes in

‘35 its proof even when the local integrability of H on R is replaced by
N q:\l

‘}5 that on (a, =), where a is as defined in the statement of the Theorem.
'fr

o Remark 2. The proof of the above theorem simplifies considerably
Qe
:5%: if (1.2) is replaced by (1.1) with S = R. In that case, essentially by
Y
]
:§§, symmetry, the fact that p is a Lebesgue-Stieltjes measure implies that
- v is a Lebesgue-Stieltjes measure. Also, the validity of the identity
I3
!::3 in (2.6) for all x € R implies that

X
o

= J H(x+y)p(dy) < =« for all x ¢ R

( -©,0

4 3

}j; and hence, by symmetry again, that
b
K. . J H(x+y)t(dy) < = for all x € R.
A R

: +

In view of these observations, it follows that, in the present case,
the Theorem follows even when the portion of the proof following the
observation that p is a Lebesgue-Stieltjes measure until the identity

Wy [o,c]

WO (2.10) is deleted, provided [o0,c] and °1n in (2.11) are replaced by

Ly R, and %1n and portions not relevant are deleted.

COROLLARY 1. ([Deny (1961) and Lau and Rao (1984)]: If H satisfy-

~ ing (1.1) with S = R is not a function that is equal to zero for a.e.(L],
e
o then it has the representation
~ )
‘$$3 H(x) = g](x)exp(n1x) + Ez(x)exp(nzx) for a.a.[L]x € R
S where £, and £, are periodic functions with £,(+) = gi(+4s), i=1,2, for
49,
>
:‘*Q each point s € supp [o] and n; such that
e _ .
- ? JGXp(niX)O(dx) =1, i=1,2.
Sy R
b
Ry

A A T N e N
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[For the uniqueness of the representation, one may assume for example

‘- ' that §, 2 0if Ny = Npi Rao and Shanbhag (1986) have implicitly assumed
j;' this to be so in their proof of the Lau-Rao (1984) result based on Deny's
V! theorem. ]
Tt
3§§ Proof. As in the proof of the main Theorem, it is clear that there
O
gf&, is no loss of generality in assuming H to be continuous and decreasing.
:‘(‘Q
In such a case, we get
B
LK)
ol H(x) = J H(x+y)o(dy) + £(x)exp(nx) for all x € R (2.13)
:‘;"‘ =2,0
\‘;‘n'
.,‘Y"'
! with £ as a non-negative continuous periodic function on R with every non-
p‘l.o
é%g zero point of suppo] as its period and n as a real number. Clearly n in
e
ce (2.13) satisfies
}“f J exp(nx)dx =1
iifl: R '
4!
'...” '
$§~ if £ # 0. Define now c¢c* to be equal to zero if £ = 0 and to be the supremum
’ A
, of the set C defined as the set of all non-negative c's for which Hc(x) =
\"p"‘
iy b
f;:‘,'f: H(x) - cg(x)exp(nx) > 0 for a1l x ¢ R and
Sy
e H(x) = J H.(x+y)o(dy) + d g(x)exp(nx), x € R
- 0
ﬁﬁ% | with d > 0, Clearly C is compact by the dominated convergence theorem
ol
ﬁat (on noting in particular that 0 <c, d < H(xo)/g(xo) < = when s(xo) £ 0)
c'r“e *
and hence ¢ € C; also
i
i 1) = [ B lewlelen), x e k. (2.14)
f-':'s ==,0
R
o In view of the Lau-Rao (1982) theorem (which is now an obvious corollary
y*y"'
{Q‘ of the main Theorem) and the definition of Hc*, the asserted representa-

gyt
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tion for H follows.

Remark 3. If o is any Lebesgue-Stieltjes measure on R (not
necessarily associated with an integral equation), then, using the
arguments employed in the theorem to establish r to be a Lebesgue-
Stieltjes measure, we have that both p and t as defined in (2.1) and
(2.2) respectively are Lebesgue-Stieltjes measures when at least one
of them is given to be so. In that case it is easily seen that

p(B) if B is a Borel set of (-=,0)
o(B) + t+p(B) =

v(B) if B is a Borel set of R,

which implies that

o+ tep = p + 1, (2.15)

The equation (2.15) implies that for every relatively compact

Borel subset B of R
a(B) = p(B) + v(B) - t#p(B) (2.16)

which may be viewed as Wiener-Hopf factorization of o. In the proof of
the Theorem, after observing that p and t are Lebesgue-Stieltjes measures,
one could have obviously appealed to either (2.15) or (2.16) to arrive

at the result, given the condition

j 'H(x+y)x(dy) <= for all x & R,
R
+

since this yields

; Ty R L T TS R e At e A o
RN, Tl AT AN O D Loy < An o

RS T N R o
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H(x) = H(x) - J H(x+y)p(dy)

-00 ’0

-
[}

" J H(x+y)o(dy) - I H{x+y)p(dy)
) R R -

u

¥ f [Hx+y) - I H(x+y+z)p(dz)1x(dy)
R R

[ foayetan, xer,.
R,

o In the case of (1.1) with S = R, we can take

B [ H(x+y)e(dy) < =
R,

}: as observed in Remark 2, and hence the prsent approach remains valid.

i This provides us with a further proof of the result of Corollary 1.

s Remark 4, In view of Remark 3, we may raise the question as to
d, whether there exists, under the hypothesis of the Theorem, a situation

in which for some Borel B =R, with positive Lebesgue measure

Ly J H(x+y)t(dy) = = for all x ¢ B
R
N +

g so that the argument based on the Wiener-Hopf factorization as it

Ny stands does not remain valid. The answer to this question is in the
:“.
:ﬁ' affirmative as is shown in the following example.
e
EXAMPLE 1. Let o be the probability measure concentrated on
s,
é" {-1,0,1,2,...} such that its moment generating function is given by
o .
" M(t) = 1 +ae”t(1-eHB, t <o,
v
4 where o and 8 are fixed positive numbers such that 1 < 8 <2 and 0 < aB < 1.
E
i: {This moment generating function but for a location change was considered
¥y
L)
A

-,

£
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earlier by Seneta (1968) in connection with a certain problem in
branching processes.] Let H be such that

(x+1] if x>0

H(x) =
0 otherwise,

where [x+1] is the integer part of x + 1. Hence it follows that H

satisfies the hypothesis of the theorem and

H(x) = JRH(x+y)o(dy), x € R,.

In this case p is the probability measure concentrated on {-1} and, in
view of the Wiener-Hopf factorization of o, t is the probability

measure with the moment generating function
* -
M(t) =1 - o(1-eY)PT, t <o,
- *
The expression for M (t) implies that v in question has an infinite
mean and hence we have here

J H(x+y)t(dy) = = for each x € R+.
R
+

Thus we have a simple counter-example supporting the claim made. !
From this example we can obviously produce examples with H satisfying

an additional condition of being positive continuous and decreasing.

(It is also worth pointing out here that this example illustrates the valid-
ity of the statement of Feller (1966) concerning ladder height means in

a random walk that is induced by variables with zero mean on page 380
immediately above his Theorem 2: in the present case, we have the mean

of o to be zero, the mean of the descending ladder height to be finite,

and the mean of the ascending ladder height to be infinite.]
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Remark 5. In (2.3), we can choose £ to be a constant if o is
non-arithmetic and as a periodic function with period A if o is arith-

o metic with span A.
B

Remark 6. For the o appearing in the Theorem, the Wiener-Hopf
o factorization given by (2.15) implies that for every real & and x,y such

e thatOiX<y<w

J exp(6z)t(dz) J exp(ez)p(dz) < J exp(ez)t(dz)
(x,y] [-x,0] 7 [0,y]

Leae yielding that

ne

1*(6) J exp(8z)t(dz) < =

1 R +

whenever

nes

" p*(e) f( : )exp(ez)p(dz) > 1.
_m’o

* *
pre) By symmetry, we have also p (8) < = whenever v (6) > 1. The Wiener-Hopf

factorization of o also gives
* * % * *
o o (8) + v (8)o (8) =< (8) +p (6), 6 €R (2.17)

where

ey ot (o) = IRexp(ex)o(dx).

LY Then (2.17) implies the following. If we assume that r*(e) > 1 and

o p*(e) > 1 (and hence that 1 < r*(e) <wand 1 < p*(e) < =), then we get
that 1 - a*(e)(=(1-r*(e))(1-9*(9))) > 0 and hence c*(e) < 1. However,

wh the definitions of o* and r* imply that p*(e) and r*(e) denote respectively
W\ p((-=,0)) and t(R,) corresponding to the case with e%%s(dx) in p1ace of

Bt ao(dx). If c*(e) < 1, we have obviously the measure relative to e® X5 (dx)
)

-

X ; ) \ ) A VRN RS YL VNS o)
W " IRk '“. A, “’“ W ."" " o "’ ‘n b a“‘a"”("‘n aty ! .’\'.‘ O‘Q‘\'a l'ullﬂ'u,l ‘\'Q‘I‘Q 'Nn B 'i b ol' Wy W AN m :
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v (i.e., the measure for which each Borel set B receives the value
’Fﬁ' J eexo(dx)) to be bounded by 1 and hence the ladder height measure
A B
) * %*
;gé} interpretations of v and P yields that ¢ (8) < 1 and t (8) < 1. Con-
F * *
s sequently it follows that for each 8 at least one of t (6) and p (8)
jﬂi should be less than or equal to 1. (Otherwise, we arrive at a contra-
a.;""’
ﬂgj diction.) This, in turn, implies on using in particular the dominated
R
v or monotone convergence theorem according as the case that for a 8,

- * *

W such that t (o ) (under o((0,=)) > 0) or ¢ (8 ) equals 1, we have either
W * * * *
}gﬁ T (eo) =1 and p (eo) <lorpe (eo) =1 and < (ao) < 1 and hence
':"’n *

Y g (eo) = 1; from this we conclude that (2.4) in the case of o((0,»)) > 0
A€y Y . *
o implies o (n) = 1.

)
)
N
@f‘ Remark 7. From what is given in Remark 6, we conclude that the
AN

- measure ¢ in the Theorem satisfies either o((-=,0)) < 1 or o(R) < 1.
L
i
R COROLLARY 2. Let H be as in the Theorem and for each x € R, and
.::‘4:

i p(x) denote the p measure on R with an alteration that the sr's involved
.f%i in its definition are replaced by s+ x. Then, for each x € R, p(x)
‘e
::3. is a Lebesgue-Stieltjes measure and, given that
"
= H(x) and J H(x+y)o (dy)
o = ,0
et
A
3%? are right continuous on R, and also that H(x) is locally bounded on Ry»
v,_’t'
it we have for each x € R+
ey -
+ *

e H(x) = j H(y)o ™ dy) + €(x) I (T 0" (ay)
10 -©,0 (-x,0) n=o0
5?‘ ) (2.18)
:; for some non-negative real periodic function £ such that it is a con-

\]
:2ﬁ stant if g is non-arithmetic and a function with period A if o is arith-
!’ 'l
g

e\
g

;.‘{‘ . -

- : ) o - - « IR A ( Oy 0) 3 ¢
F KR A AP )’ { ¢l % \!‘ql.l‘ Yy LAt o
A D N A A O R O R R S e W O PO RN l»«&'*.o":*.‘( -‘I' LMY A ) (AL SOOI HONIIEN WY Wit




metic with span A, and n is as defined in the Theorem. (If n satisfy-

ing (2.4) does not exist, we take n to be any arbitrary real number

*
with £ = 0; also, we define g © to be the probability measure that is

) degenerate at zero.) Moreover, if f is any Borel measurable function
:ﬁ on (-=,0) such that J( )lf(y)lp(x)(dy) < = for each x € R, and ¢ fis
l\ - .0

ﬁg any Borel measurable function of the form of £ defined above, then the
h‘ -

i function H given by

<y ~ + ® »*

A(x) = #(y)e X (ay) + £(x) (T ™) (ay), x € R
t". +
e‘-,’ ("".O) [-X .O) n=0

ol

".

= f(x), x e (-=,0)

e satisfies (1.2) (even with 'a.a.[L]' replaced by 'all'.).

»

Wb

'; Proof. We have that p is a Lebesgue-Stieltjes measure concentrated
o on (-~=,0). Clearly, for each x ¢ R, and Borel set B
¥ ‘
19"
L o oo
s o) @re) = T p{M)((-arex) N B) (2.19)
S n=]

y ,

$$ where p%x) = p and for each n > 2, pﬁx) is the convolution of measures
) -
*$} pﬁx%([-x,o)n-) and p (and hence is a well defined Lebesgue-Stieltjes

;'.,u -

) measure concentrated on (-~,-x)). For any bounded interval (a«,8], we
gt

ol have

.:: : ® o«

3

o p(xx([u.sl +x) < To ™[a,B]) <=

,‘fo n=1

. *

r (with o " as the n-fold convolution of o with itself) and hence it
:5; follows that p(x) is a Lebesgue-Stieltjes measure. Now, if H(x) and
).

ﬁ‘ J H(x+y)p(dy) are right-continuous on R_, then (2.1) is valid with
) (-aio

2t
o

-::

.

(n::

.

D)

N o T oo TR R o s :',.- L v, o ‘ ::._J .-...-:':;,’- ,';\—__. ,_:__r,‘_;_';_.f_.;:\:;!..-";\( A.- h}_"},ﬂ*.»
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'a.a.[L])' replaced by 'all' and & as defined in (2.18). From this

&3 we get for each positive integer k and x ¢ R,.
%s k ( *
0 x) = | HOon) (T oM ey) + [ ixa)o ™ (ay)

B -®,-X n=1 {-x,0
L""
S k-1
K - *
R ce] T () (2.20)
:i? {~x,0) n=0
oy on noting that th tricti f o and o{X) ¢ ) identical
o g tha e restrictions of p ~ and o o [-x,0) are identica
'
4,
:§$e for each n > 1. On taking, under the assumption of local boundedness
(NN |
"r" P . . . .
A of H(x) on R,» the Timit as k + = in (2.20), we arrive at the identity
it (2.18). It is easy to verify that H of the Theorem satisfies (1.2)

‘ 4
: (even with 'a.a.[L]' replaced by 'all') on using the Wiener-Hopf factor-
l. Y . > *
,ﬂ, ization and the observation in Remark 6 that (2.4) implies o (n) =

R _

o (and p (n) < 1).

[ %O
54
e Remark 7. If we have H(x) to be monotonic on R (or on [a,B) if a
v‘g!

defined in the Theorem is finite), then the above Corollary 2 remains

i?é; valid with the assumption of the right-continuity of H(x) and
b}
Zﬁ& J H(x+y)o(dy) on R, replaced by the assumption that H(x) is
.lil, -® .0

" right-continuous on R (or on [a,=) if a > -=). Moreover, if a > -=, the
.7 4
k;: corollary remains valid with the right continuity of H(x) and
&3]
iy H(x+y)o (dy) on R, together with the local bounded £ H(x)
4%; ( x+y/p\dy) on + cogether wi e loca oundedaness o

! -0
o on R, replaced by the assumption that H(x) is locally bounded and right-

4
: t continuous on [a,»). It is also worth noting here that if the local

)
W boundedness of H is deleted from the statement of the corollary, then
v the corollary remains valid subject to the alteration that 'for every
‘:\A'
:ﬁ& x e R_' immediately above (2.18) is replaced by "for a.a.[L]x e R,
?,‘\:.

;

kA 4

.
e ' SO, 3 't' 'n""o’.'n‘,’lh s"'a' el ey, "‘A‘ EOOTOTO o 9 ", c'.‘u’ : .'ﬁ' el
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P
o
N since by Fatou's lemma and the local integrability of H, we have in
) (2.20), as k » =
tagl
R *k
gy J H(x+y)p "(dy) - 0 for a.a.[Llx & R,.
.u; [-x,0
COROLLARY 3. Let o and H be as in the theorem with o > - and
1§3 let p(x) for each x € R, be as defined in Corollary 2. Assume that
A the restriction of H to [a,=) is locally bounded and right-continuous.
* %*
;3. Define 6 = {6: o (8)=1} with o as defined in Remark 6. Then © is non-
)
2& empty (without having more than two members), and if o((-=,0)) > 0 and
qY
KON 8, is the only member in © or is the smaller of the two members in o,
§5 we have
KN
58 A o _x
2 Mg o = J xe 2 g(dx) < 0.
R Q' Y [ay=)
o~ Moreover, in this case, we have the assertions of Corollary 2 to be
valid with
~ (i) g=0ife is a singletonand u, <0,
o’
© 8 X 8y
e (ii) J e“(X+Y)( Y p*n)(dy) replaced by xe o . J ye ° p(x)(dy)
o [-x,0 n=o (-=,0)
. if © is a singleton and Mg o = 0,
::\‘ . o0 * 9 X e .Y
i (iii) J e (x+y)( 7 o ")(dy) replaced by e L J e p(x)(dy)
N W [-x,0) n=o0 (-=,0)
L
0 with 6. ¢ 0 and 6, > 6 if © is a doubleton.
ﬁh Proof. If u((-=,0)) > 0, we have obviously in view of the fact that
»." *
ﬁi a > -= some real number & such that o (8) =1 and if u((-=,0)) = 0, we
. have clearly £ # 0 and, hence from the Theorem, n exists such that ™(n) =
X}
lﬂz where p* and r* are as defined in Remark 6. From what is mentioned in

AN 7 1.¥ : )
TR ATG R i.u,‘f“,ﬁtié .‘!0.;,f" a‘, o'. s', t‘.i + a‘ A "a"’a > .\‘0“

OO ST S A A
", ROMOA a’l’., ’c.loqm ‘,.} U‘.‘a‘n; |!t‘y" L Boly }gtq,,,_\‘ i,
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* * * *
Remark 6, we have ¢ (§) =1 ifp (8) =1 ando (n) =1 if ¢ (n) = 1.

Consequently it follows that o is non-empty. Clearly the assumptions

of the Theorem imply o({0}) < 1 and hence in view of Remark 6 we have

§ < n whenever p*(a) =1 and 1*(n) = 1, From the Wiener-Hopf factori-
zation concerning probability mearues it is clear that from any A,

o*(A) =1 if and only if either pf(l) =1 or t*(k) = 1. It is there-
fore clear that o can at most have two points. (This latter fact also
follows directly from properties of moment generating functions of
probability measures.) From Feller's (1966) Theorem 2 on page 380 and
the remark following Theorem 2 on page 396 it follows that if p (s ) = 1,
then Mg o 2 0. If % is as defined in the statement of the corollary
and o((-:,o)) > 0, then, from the fact that p*(G) =1 and *(n) =]

imply that 6 < n, we have p*(eo) = 1 and hence Hg o S 0. We shall now
establish the assertions (i), (ii) and (iii). C]gar1y, the assertion

(i) is obvious from Corollary 2 since the remark in Feller (1966) follow-
ing Theorem 2 on page 396 implies r*(eo) <1ifu o © 0 and hence

there is no n such that 1*(n) =1, On the other h:nd, if we have the
situation either as in the assertion (ii) or the assertion (iii), we

have an n such that 1*(n) =1, In the case of Mg o
Theorem 2 on page 380 implies the existence of n 2 8 and in the case

= 0, Feller's

of © containing two points clearly we have n = 8y > 0, with 6, €0 in
view of what we have observed earlier, Let £ be as in Corollary 2. We
shall consider here this to be a function defined on R. Clearly the
restriction of £ to [a,») is right-continuous, locally integrable and

locally bounded. Define now in the case of assertion (ii)

s

h
b

_'.‘\-{‘, '.'b"’\ S
AN

RX
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e £(x)(x+a)e ifx>a
H(x) =
" (x)
ﬁﬁ‘ 0 otherwise
W
o
Q&; and in the case of assertion (iii)
L
A e1x .
:éo g(x)e if x >a
R
n." H(x) =
U
kﬁ : 0 otherwise.
at
- Observe that in both the cases H satisfies (1.2) and we get
& ,
0! Hix) = | H(x+y)o(dy) + ce(x), x € R,
b .:q (‘”:0)
"
I for some positive constant ¢ (which need not be the same in the two
fﬁj cases). In both the cases, we have H satisfying the conditions re-
&
SN
f,: quired to arrive at (2.18) of Corollary 2 and hence the equation in
) question to be valid with ¢t replacing £. Since c'lg is of the form
i) of £, the assertions (ii) and (iii) easily follow.
'\
'
COROLLARY 4. Let {(vn,wn): n=0,1,2,...} be a sequence of vectors
”(o.’. .
" of non-negative real components such that at least one i # 0 and W, 0
)
W
§ : and A > 0. Further, let k and © be positive integers such that the
1)
L)
g largest common divisor of k and those n for which W, > 0 be t. Then
'e: the sequence {(vn,wn)} as defined satisfies the recurrence equations
\
\
by of )
i v + k= WV , n=0,1,... (2.21
n meo M ™N
-
B
:‘\ and for some integer k] that is an integer multiple of t such that
L
'
.:“. k] > k,
'y ] .
:\2: Avn+k = vn+k|. n 0,',...,‘( (2.22)
"
‘   A A RS A ; p e m Y P A P AP At A ! g S 2 3 AP N LTI IS T T
A A A A 'Z"".’if“-\t,‘.‘ MUAM R » ARHRAL R KM N a R F"‘ ? “‘. AN AAHLLYA)
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s
. only if
L ot
3 V. = Q) ik k) n=0,1
:: n qn ’ sl gees
[
oty for some non-negative perioaic sequence a, with period t .
¥
o Proof. 1t is sutficient if the result is established for v = 1.
ql
o Defining H and ¢ such that
hor
. ik X 2K
':! H(X) =
\‘
id 0 otherwise,
§
e
Wt ana
s al{nd) = W n 2 -k, oll-ky-k+1,...0°) = 0,
3
LY where [x] denotes the integer part of x, we see that the conditions for

the validity of {2.3) with 'a.a.{L)' replaced by 'all' are met. The

‘ﬁi equation in question implies, in view of (2.22) and the fact that
’i;j o({-k}) > 0, that H(x+k,-k) = AH(x) for all x > -k. Since we can find
i
we an integer r such that r(k]-k) > k, we have subsequently
X
)
E@ H(x) = J H(x+r(k]-k)+y)x'rc(dy), x € R, (2.23)
Vi) [-ky=
it
R with r(k,-k) - k > 0. There is no loss of generality in assuming that
O *
%E o{{0}) > 0 and hence that the measure ¢ defined such that
t
i * -r
L o (B) = a c(B-r(ko-k)) for every Borel set B
‘i
’Qj is arithmetic with unit span. Consequently, the Lau-Rao Theorem (which
",
{fj is now a corollary of our theorem) implies, in view of (2.23) and the
.;h. - -
' periodicity of H(x)x X/(kl k), x » -k, the required result.
1)
R
B
..::|

LR L AT 4"
f.r,‘ ‘i.l‘ ‘_:.lu‘e'.“.qh'

T A e, W Ca b A AT /.\l .;".;A- "_ o “".
'}. ) Il ) ‘;!)’)'-,‘ ‘IA'U‘ ." q ) ,( ‘L/‘ ‘4. J

T AN R W IV Py : TN YL N 2C
2 3
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Remark 8. It is also possible to prove the result of the corollary
by using the Perron-Frobenius Theorem given in Seneta (1973, pp.i-2).

For the details, the reader is referred to Alzaid (1983),

Remark 9. If H is as in the Theorem such that it is locally bound-
ed and right-continuous and a defined in the Theorem is finite and

a({a}) > 0, then, for some B > |a| with 8 as an integer multiple of the

ARSI

spa~ of ¢ in case ¢ is arithmetic, and x» > 0,
AM(x+]a[) = H(x+g) for all x € [0,|a]]
only if H(x) = g(x)exp(nx), x & [a,») with £ as a periodic function with

every non-zero support point of o to be its period and n such that

J exp(nx)o(dx) = 1 and n = -(B-a)log . This result is a version
{a,=)

of the above Corollary 4 in the case of arithmetic o, and it follows via
a modified version of the proof of the corollary on using the result of
Corollary 2 when H(-) is replaced by H(xo+-) with X, € R, in the case
of nonarithmetic o. Whether or not the result of the present remark is
valid without the condition o({a}) > 0 is an interesting question to

which we have not found any answer as yet.

Remark 10. Now, if we have k to be a positive integer and {(vn,wn):

n=0,1,2,...} to be a sequence of vectors with non-negative real components

such that LI 0, Vi # 0 for some n, and the largest common divisor of

VLS

-

k and those n for which LI 0 equals 1, then it follows that the result

X

of Corollary 3 identifies the solution to the system of equations

Pr "z % Y Yy

v =

IR WeVoene M=0,1,2,...
m=0

given the sequence (wn: n=0,1,2,...} and the values of v ,v],..

‘ - . . N
AN ALY \.'-\*-'p*- - Sh ) Y R AN T T P .(.(.r“ g
ok, ‘(‘ l' ‘ ‘\' * FC- N { ‘I v‘ e, e (o b “ ‘ti‘“ﬂ"“"‘i"ﬁ "" Lk A " .. '. F‘ e o T o AT n. 0 l s ‘ 2 ' ) “
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Indeed, if we define D = {b: >0, b" = ] b'w } and {f. : i>k,
g n=0 '
'¢Q r=0,1,...,k-1} to be the sequence of absorption measures corresponding
Wt
‘:}: to the non-negative matrix T(in the sense of Seneta (1973)) with state
' -
“‘5‘ space {0,1,2,...} and the (i,j)th element as
o §.. if 1,5 = 0,1,...,k-1
4 1
s = i i = ] i -
§‘ i3 wj-i+k if i k,k+1,... and j > i-k
Wil 0 otherwise,
N where 6ij is the Kronecker dclta, then the corollary yields that the
\.-\.
‘fi: system of equations is satisfied if and only if D is nonempty,
-'q-l
" fn 0 ""fn -1 are finite for each n > k, and one of the following
'&:; condition holds:
--::f
'.P_.-f ©
P (i) D has only one point, § (n-k)bnwn < 0 for b e D, and
L - ) n=0
o -
::.\‘:: Vn + fn,ovo + o v 0 + fn.k-]vk-], n—k,k+],... .
e
.‘.‘.
(ii) D has only one point, } '(n-k)b"wn =0 for b ¢ D and for
3 n=o
At
LA some ¢ > 0
.\,-\ =
t?ﬁq =f (v -c.o.b 0) + + f (v -c(k-])bk'1) + cnb"
Vn - n’o VO .0.D. LEE IR n,k_-l k'] n y
‘i) =
I3 n=k,k+1,...,
Y, .
o with b ¢ D.
o
i .
jﬂvf (iii) D contains two points and for some ¢ > 0
SRS
#'7-.:
N -
:\,‘ Vp = fn O(vo-cbo) + ...+ fn K ](vk ]-cbk ]) +cb", nsk,k+1,...,
b ’ [ L -
:'53 with b as the larger of the two members of D.
by
i
Y
"y
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A direct and substantially simpler proof of the result here without
involving the Wiener-Hopf factorization can obviously be given (see,

for example, Alzaid (1983)).

3. SOME COMMENTS ON PREVIQUS RESULTS
We shall now discuss in the light of our findings some existing

results and suggest possible extensions.
3.1 ARNOLD (1980):

Let Y],n <o 2V denote the n ordered observations in a random
sample of size n from a non-degenerate distribution F concentrated on
the set of non-negative integers. Arnold (1980) raised the question as
to whether the independence of the random variable Y

-Y and

2,n 1,n
the event {Yl,n = m} for a fixed integer m > 1 implies the distribution

F to be geometric (or shifted geometric). In this case, the property

is equivalent to a recurrence relation of the type (2.24) subject to a
modification that wn's are given to be certain functions of vn's. In

view of the modification involved, we can not obviously apply our result in
Remark 10 directly to identify the solution Vi to the system of equations
in the present case. However, the result of Corollary 4 shows that,

under some mild conditions assuring certain points to be atoms of F,

the independence of Y2 n - Y] n and {Y] n - m} together with the condition

P{Y

> j\Y]’n=m} =P, Y0 jlY],n = m+m'}, j=0,1,...,m-1

Z,n'Yl,n

for some fixed integer m' > 0 characterizes a geometric distribution.
This extends a result of Sreehari (1983) showing that the independence

of Y -Y and {Y

240 1,n
{Y1 n" m+m'} for some fixed integer m' > 0 characterizes, under some

= m} and the independence of Y2 n - Y] and

1,n $N

mild conditions, a geometric distribution.
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%
R 3.2 KRISHNAJI (1974):
In view of the result in Remark 10, it is seen that Theorem 4 of :
} Krishnaji (1974) is not correct. This also follows from the counter- ‘
¥ example given by Patil and Taillie (1979). The error in Krishnaji's g
) argument appears in the last sentence of the proof in which it is f
L3 - £ ‘
claimed that since X = Aexp{A(6-1))} is degenerate, A has to be degene-
‘!
¢ rate. We may however point out here that Krishnaji's Theorem with the
: portion "G(t) is non-negative for all real t" in it replaced by "G(t) is
2 L/
)
\ infinitely divisible" is valid.
" ?
Wt !
3.3 SHANBHAG AND TAILLIE (1979):
U
ﬁ The following result is an extended version of the Shanbhag- \
Cd
> cqq s . . -
e Taillie (1979) result and it is a trivial corollary of our result of
L)
Corollary 4:
’l
.: "let {(ax,bx): x=0,1,...} be a sequence vectors with non-negative
0
" real components such that a, > 0 for all x and bo > 0. Let (X,¥) be :
.‘ e
a random vector with non-negative integer-valued components such that
A ]
¢ for each x with P{X=x} > 0, we have :
d
[}/ a bx_
X P{Y=y|X=x} = AXE__X, y=0,1,...,x, )
X
f where {cx} is the convolution of {ax) and {bx}. Assume that
45 P{X-Y=ko} > 0 and P{X-Y=ko+k]} > 0. Then the following conditions are ,
!r
> equivalent.
- .
ﬁ (i} Y and X-Y are indenpendent. 3
v :
A (i1) P{Y=y} = P{Y=y|X-Y=k }, y=0,1,... ;
I'. 0
R = Y= = = Y= 3 =
P{Y=y|X-Y ko} P{Y=y|X-Y ko+k11. y 0,1,....k0.
o (iii) For some » > 0 and some periodic sequence (qx; x0T,
e
4
)
\. <!
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( \r.‘e Iol‘.
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with the largest common divisor of the x for which bx > 0

as one of its periods

- - x - 1]
P{Xx=x} = q,C.8 s x=0,1,2,...

Shanbhag-Taillie (1979) result may be considered to be a variant

of Shanbhag's (1977) extension of the Rao-Rubin (1964) Theorem on damage

models and is itself an extension of Patil-Taillie (1979) result. Patil

and Taillie (1979) have considered a specialized version of Shanbhag-

X X
Taillie model with a = %T, x=0,1,... and b_ = ilill—. x=0,1,... when

mn € (0,1) and fixed, and hence with

P{Y=y|X=x} = (;)ﬂy(1-")x-y, y=0,1,...,x; x > 0. (3.1)

These latter authors have also shown that if (3.1) is valid together with
P{Y=y} = P{Y=y|X-¥=k}, y=0,1,...; P{x-y=k} > 0 (3.2)

for some fixed k > 0, then it is not necessary that X be Poisson thus
disproving a conjecture of Srivastava and Singh (1975). Our result of
the last remark not only shows that Srivastava-Singh conjecture is false
but also identifies under Shanbhag-Taillie model the class of distri-
butions relative to which the condition (3.2) is valid. In particular,
it follows from our result that under the model in question if (3.2) is

valid with k = 1, then either gx/cxcex? + (l-e)x; for certain 6 € [0,1),

X

x].kz > 0 or gx/cx«ek]

+ (1-e)xA§ for certain e [0,1), Apadp > 0,

where 9, = P{X=x}.

3.4 KENDALL (1951, 1953), LINDLEY (1952) AND OTHERS:

The restricted Deny equation (1.2) appears in several places in




queueing and storage theories (see, for example, Kendall (1951, 1953),
Lindley (1952) and Wishart (1956)). 1In particular, Lindley (1952)

has shown that the stationary waiting time distribution function cor-
responding to a GI/G/1 queueing system satisfies (1,2) with H(x) = 0
for x < 0. Indeed our Corollary 2 gives the expression for H in this
case and shows that the distribution in question exists if and only if
the relative traffic intensity of the system is less than 1 and that
when it exists the distribution is compound geometric; it may, however,
be noted here that the results cited are not new and these have appear-
ed in Lindley (1952), Feller (1966) and elsewhere. The result of our
last remark could be applied to obtain certain conclusions of Kendall

(1953) and Wishart (1956) concerning GI/M/s and GI/Ek/1 systems re-

spectively. The result implies that, in either of the two cases, the

stationary queue length distribution exists if and only if the corres-
ponding relative traffic intensity is less than 1. Also it yields
the known results that in a GI/M/1 queueing system the stationary
queue length distribution is geometric and in a GI/M/s system the
stationary waiting time distribution is exponential but for a dis-

continuity at zero.
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